A Comparison of Perfect Table Cryptanalytic Tradeoff Algorithms
نویسندگان
چکیده
The performances of three major time memory tradeoff algorithms were compared in a recent paper. The algorithms considered there were the classical Hellman tradeoff and the non-perfect table versions of the distinguished point method and the rainbow table method. This paper adds the perfect table versions of the distinguished point method and the rainbow table method to the list, so that all the major tradeoff algorithms may now be compared against each other. Even though there are existing claims as to the superiority of one tradeoff algorithm over another algorithm, the algorithm performance comparisons provided by the current work and the recent preceding paper are of more practical value. Comparisons that take both the cost of pre-computation and the efficiency of the online phase into account, at parameters that achieve a common success rate, can now be carried out with ease. Comparisons can be based on the expected execution complexities rather than the worst case complexities, and details such as the effects of false alarms and various storage optimization techniques need no longer be ignored. A significant portion of this paper is allocated to accurately analyzing the execution behavior of the perfect table distinguished point method. In particular, we obtain a closed-form formula for the average length of chains associated with a perfect distinguished point table.
منابع مشابه
Analysis of the Parallel Distinguished Point Tradeoff
Cryptanalytic time memory tradeoff algorithms are tools for quickly inverting one-way functions and many consider the rainbow table method to be the most efficient tradeoff algorithm. However, it was recently announced, mostly based on experiments, that the parallelization of the perfect distinguished point tradeoff algorithm brings about an algorithm that is 50% more efficient than the perfect...
متن کاملAnalysis of the Non-perfect Table Fuzzy Rainbow Tradeoff
Time memory tradeoff algorithms are tools for inverting oneway functions, and they are often used to recover passwords from unsalted password hashes. There are many publicly known tradeoff algorithms, and the rainbow tradeoff is widely believed to be the best algorithm. This work provides an accurate complexity analysis of the fuzzy rainbow tradeoff algorithm, which has not yet received much at...
متن کاملAnalysis of the Rainbow Tradeoff Algorithm Used in Practice
Cryptanalytic time memory tradeoff is a tool for inverting one-way functions, and the rainbow table method, the best-known tradeoff algorithm, is widely used to recover passwords. Even though extensive research has been performed on the rainbow tradeoff, the algorithm actually used in practice differs from the well-studied original algorithm. This work provides a full analysis of the rainbow tr...
متن کاملA Parallel O(n27n/8) Time-Memory-Processor Tradeoff for Knapsack-Like Problems
A general-purpose parallel three-list four-table algorithm that can solve a number of knapsack-like NP-complete problems is developed in this paper. Running on an EREW PRAM model, The proposed parallel algorithm can solve this kind of problems of size n in O(n2) time, with O(2) shared memory units and O(2) processors, and thus its time-space-processor tradeoff is O(n2). The performance analysis...
متن کاملThe cost of false alarms in Hellman and rainbow tradeoffs
Cryptanalytic time memory tradeoff algorithms are generic one-way function inversion techniques that utilize pre-computation. Even though the online time complexity is known up to a small multiplicative factor for any tradeoff algorithm, false alarms pose a major obstacle in its accurate assessment. In this work, we study the expected pre-image size for an iteration of functions and use the res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012